Pi (π) is an old number. It is found in the ratio of a circle’s diameter to its circumference. This might not seem like a big deal for our modern sensibilities, but this was important in the construction of arches for buildings and churches. And, let us not forget the wheel.

Circles are everywhere from wheels of a car, to wheels on a bike, to the shape of a pizza. If you don’t think pizza boxes don’t have to consider pi when making them, you are mistaken. The problem of a circle in a square has perplexed many mathematical geniuses over the centuries.

Talking about mathematicians, they have some funny words to describe pi.  Mathematicians would call pi irrational, which means that you can never find a fraction that is equal to pi.  For ancient people, or for anyone without a calculator, this is maddening. It is nice to be able to simplify pi.  But, there isn’t a way to do that.  For centuries, people looked for a fraction for pi and the closest is  22/7, but this doesn’t exactly equal  pi.  The other weird thing about pi is that it is transcendental, which means it will never be the solution to an algebraic expression.

Pi is a number that is everywhere but it just doesn’t fit in our standard way of thinking about numbers.

Another weird thing about pi is that it goes on for infinity, without end. Computer scientists have calculated pi for billions of digits. Like this …3.14159265358979323846264338327950288419716939937 …  And on and on and on.

The last thing about pi is that it is use in statistics without our knowing. Whenever there is a bell curve shape, the mathematical expression for the bell curve, also known as a normal distribution, has pi in it. That means that pi is not only in every circle you see, but in any poll where an average is taken.

Pi is everywhere, which is why we take a day out of the year to celebrate it.

Happy 3.14!

 

For those serious about pi:

A history of Pi

A pi-shaped pi pan

We tell time by measuring a repeating pattern. The earth spins — causing it to be light and dark, which we translate as a day. Pendulums swing back and forth, which we translate as a second. Scientists would call things-with-repeating-patterns oscillators. However, there is a problem.

Researchers have found that the earth speeds up and slows down in unpredictable ways. So, the earth is not a good way to measure the passing of time. The earth is a bad clock.

This is unfortunate, since we need precise clocks for many of the technologies we use,  like GPS. So we need a better clock–a more precise clock, a clock that is stable for a long time.

To make a better clock, it needs three parts: An oscillator to produce a repeating pattern; a counter to measure how often the pattern occurs. And, a part to make sure that the oscillator is creating this pattern correctly—which is called a discriminator.

Deep in a precise clock, or an atomic clock, is an oscillator. In this case, it is a quartz gem that is vibrating—the quartz acts like a piece of jello that wiggles when hit. And, those wiggles are counted to tell time.

To make sure that the quartz is wiggling correctly, atoms are used to check it. Cesium atoms

How?

Well, inside the atoms are electrons. And, electrons live at different levels from the center. Electrons can move up and down these levels, like a ladder, when they get zapped with energy. However, the electrons can’t keep that energy, so they give back a precise amount of energy when they return to their original level. It ends up that that energy given back has a precise oscillation to it. This is compared to the wiggles made by the quartz to see if the quartz is correct.

Sure, there are lots of steps, but it is worth it, since atoms are very precise. They lose their precision every 1.4 million years.

So it seems that atoms take a licking, and this keeps clocks ticking.

 

And this year’s Oscar goes to .   .    .   chemistry.

On that wonderful night in LA, the red carpet is full of celebrities and fans all eager to hear who wins the gold statue.  However, the Oscar statue isn’t pure gold. That would be extremely expensive.  The Oscar is actually a bronze statue that is coated with gold.

So how does the Oscar become, well, an Oscar?

To understand we have to think about frog’s legs.

In the late 1700s, Luigi Galvani, who was a professor of anatomy in Italy, was dissecting frogs using a metal scalpel and a copper clamp. He noticed something: The frog’s legs twitched like they were alive! He repeated this a couple of times and they twitched every time.

He found something amazing and called it animal electricity. That is the animal had some supernatural life force inside of it. Galvani wrote up his results and all of Europe embraced this idea.

But, on the other side of Italy was a physics professor named Alessandro Volta. He believed in Galvani’s idea at first, but began to think it was the two different metals that caused the legs to twitch. Volta recalled an earlier experiment by another scientist who had put his tongue between two different coins, and it created a terrible taste. Ends up, that  the two metals next each other in a liquid (saliva, in this case) started a chemical reaction.

So with this old experiment in the back of his mind, Volta made sandwiches of two different metals and put them in a jar full of saltwater. Then, he connected wires from this stack of metals to the frog’s legs. They twitched.

What Volta showed is that two different metals together make electricity. He made a battery.

In a battery, electricity flows from one metal to the other.

But what does this have to do with the Oscars?

Well, in order for electricity to flow in a battery in one direction, there has to be metal flowing in the opposite direction.  If you were to look at the metal under the microscope you would see that a metal coating is starting to form.

So to make an Oscar this coating process is taken to a much bigger level.  The bronze statue is put in a huge chemical tank that has microscopic gold floating in a liquid. Electricity is attached to the statue and the gold particles become attracted to the statue and start to coat it. After a really long time in the tank, the statute becomes the beautiful icon we know today.

So, if you enjoy the Oscars, and many do, you really have frog’s legs to thank.

References:

Luigi Galvani: Bern Dibner

How the Oscar Got a Facelift this Year

How Frog Legs Helped Make the Oscars Possible (Video)

When it comes to communicating, some things never change.

The african drum. Many would say it was an musical instrument. It is. But, it is much more than that. African drums were a way of communicating over vast distances in ancient Africa.

If there was a herd coming or an enemy was approaching, drummers would send messages through their drums to neighboring villages.  The messages would be repeated again and again and to send the message further.

It ends up that modern technology does something similarly. Messages in your telephone are repeated so that the volume isn’t loss and this allows messages to be sent over long distances.

But the most mind-blowing stuff that the ancient Nubians discovered is that if you drum a message near the banks of the Nile, the message can be sent over the surface of the water without losing volume. Scientists would say there is a a lossless channel at the interface between the water and air.  That means you could whisper something and someone across the Nile nearly 2 miles away could hear it.

Today, we seek such an ability with optical fibers. The challenged is to send a message without it losing volume and without the need for lots of repeaters.  It seems the some of the issues of the past are still present today. Showing that there really isn’t anything new under the (African) sun.

When the voice in the commercial says “chocolate melts in your mouth and not in your hands,” well they aren’t joking. Scientifically, it is true. Chocolate melts around 92 degrees Fahrenheit, while your mouth is 98.6 degrees. (Your hands are only 60 degrees.)

Chocolate comes from a seed housed in football-shaped pods, which sprout from a tree called Theobroma cacao. This name literally means food from the gods. This tree grows along the Equator in places like Ghana, Nigeria, the Ivory Coast, Indonesia, Brazil, and Ecuador.

Chocolate is an old food. Montezuma, the ancient Aztec emperor, drank 50 jars of a chocolaty drink to increase his vitality and virility. But, what he drank was very different from the hot cocoa we drink today.

It takes many many steps to make modern chocolate. First, when chocolate farmers open the fruit, the seeds do not look appetizing, that is because the cocoa beans are surrounded by a white gooey mash. “It looks pretty disgusting,” said Gail Ambrosius, a chocolatier based in Madison, Wisconsin. But if you were to taste these beans, you’ll be surprised. “It tastes just amazing. Kind of like honeydew, melon, apricot, peaches. It is just delicious, ” she said.

Once the cocoa beans are taken out, then the transformation begins. The beans are tossed in a large box to ferment, which generates lots of heat—especially after about a week. After that the cocoa beans are laid out on a black tarp to dry. And sorted to remove any stones that might be there. Then, the beans are roasted. “It teases out the final flavor of the beans,” said Ambrosius. The cocoa beans are then crushed and at this point they are called cocoa nibs. And with heat and pressure, you get a drippy melted chocolate, which is called cocoa liquor.

After all of that, a decision has to be made: Are you making a dark chocolate, a milk chocolate, or cocoa powder?

So then you do the math.

“If you’re making a 70 percent chocolate and you’re making a thousand pounds total, you would put 700 pounds of the liquor in your machine and 300 pounds of sugar. So there you get the 70 percent chocolate,” said Ambrosius.

Interestingly, the higher the percentage of cocoa, the healthier the chocolate is. Some studies suggest dark chocolate raises the good cholesterol—and lowers the bad.

But remember, chocolate has lots of sugar—as much as soda. So eat a little bit and savor all the tasty chemistry in your mouth.

Here is what happens when your brain is shaken or stirred.

 

Taken from Newton’s Football:

What exactly is a concussion? Robert Cantu, co-director of Boston

University’s Center for the Study of Traumatic Encephalopathy

and one of the world’s leading experts on head injuries, describes a

concussion as “an alteration in brain function induced by biomechanical

forces.” Those biomechanical forces include sudden acceleration

and then deceleration of the head, which can cause the brain

to crash into the inside of the skull or be twisted or strained in such

a way that certain symptoms result. Those symptoms may include,

but are not limited to, headache, nausea, sensitivity to light and

noise, dizziness, amnesia, drowsiness, the inability to concentrate,

and fatigue. Some minor concussions resolve within minutes, while

in severe cases a post-concussion syndrome can last for years.

In general, the skull does a good job of protecting the brain

against the dangers that an early human might have encountered,

like a fall onto soft ground or getting hit with a small stick. Of

course, the skull—and the brain it’s protecting—fares less well

against modern dangers like bullets and motorcycle crashes. Or a

270-pound middle linebacker running at full speed and driving the

point of his helmet into your chin.

 

Learn more about the science behind football here:

 

Newton's Football

Snowflakes reflect light like a mirror to create their white color.

Liquid water is clear, but snow is white. Why is that?

Well, the snow crystals have many surfaces at different angles and each one of these surfaces acts like a tiny mirror which bounces back the light.  So, the white color you are seeing is actually the light that is being reflected.  The light bouncing off the surfaces contains all the colors of the rainbow combined together, to make white light.  This white light lands on a snow crystal’s surface and then reflects back off, like a flashlight beam on a mirror.

This act of bouncing light is what scientists would call scattering. The surface of the snowflake scatters  light in many directions, causing us to see the white color.  In an earlier podcast, we learned why snow has six sides. Snow is a crystal, with facets just like a diamond. Each one of these facets bounces light back to give it the color we see.

Now, snow is not the only thing that bounces light back. Water droplets can scatter light back too. This is why clouds, steam, and fog look white.

So, the colors you see, well, they  are just the surface.

 

 

 

 

 

Warm lakes and cold Canadian winds create the perfect (snow) storm.

In the early winter (from November to January), there is a chance for large winter storms because lakes help to produce more snow.  When cold dry winds from Canada blow over the Great Lakes, the winds pick up moisture that is evaporating from the lakes.  That moisture is turned to snow and then dumped on some poor city. This is called Lake Effect Snow and it occurs when there isn’t any ice on the lakes. As soon as the lakes freeze over, the lake effect snow season is over.

You might have heard stories of snow storms where feet of snow are produced in a few days. The lakes enhance the snowstorm by providing more moisture to the system.  Cities along the Great Lakes are most effected. However, Buffalo, NY has been a sweet spot for lake effect snow in recent years.

So, be on the look out for mega-snow storms early in the winter season. Without ice to capped off the moisture, there will be more precipitation.

Rain is also increased by lakes and oceans, but the amounts are not as much as the snow. This is because 1 inch of rain is equal to 10 inches of snow, according to the National Weather Service. (That ratio depends on the temperature and the fluffiness of the snow, by the way.)

No matter how you measure it, increased precipitation by lakes is snow joke and will make one wish for an early spring.

 

The Gateway Arch turned 50 with the help of modern materials and math.

When creating a monument for future generations to behold, there are two features it must possess—simplicity and permanence.  This was the thinking that architect Eero Saarinen used when designing the “Gateway Arch to the West,” which celebrated its 50th anniversary October 28, 2015. Saarinen gained inspiration by looking to the nation’s capital. He surmised that timelessness arose from geometric forms—the Washington Monument is an obelisk; the Lincoln Memorial is a rectangle; and the Jefferson Memorial is a circle in a square. So, Saarinen selected an arch.

However, this arch would be no ordinary arch. Aloft at 630 feet, it had a special geometric form that moved mathematicians and masons—the catenary arch.  A catenary arch appears when a chain hangs freely from two supported ends and occurs in everyday life from draping power lines to necklaces.  When inverted, this arch supports its own weight and differs from a parabola. A catenary arch has steeper legs, a flatter peak, and greater strength. With this appointed shape, Saarinen next sought to find the right building materials to make it.

He chose a material that would represent the modern age—stainless steel. This metal was first created in the 19th century, but perfected in the 20th. It is composed of steel (a combination of iron and carbon) with a dash of chromium. The mix of iron and carbon gives the metal strength, but chromium provides longevity by overcoming iron’s weakness of rusting.

Rust never sleeps, as songwriter Neil Young once penned.  So, the best way to stop it is to prevent it. Paint is one way to halt rust, but an atomic layer of protection helps too. This is where chromium comes in. Chromium makes a thin layer of chromium oxide on the surface, which hinders water from combining with the iron to create rust.

The path to developing the metal for the Gateway Arch was circuitous at best. Stainless steel wasn’t a creation, but an evolution. The discovery of chromium occurred in the 18th century by French chemist Louis Nicolas Vauquelin.  However, the secret to making lasting metals would take some time, as it puzzled some of the world’s greatest minds. Michael Faraday, one of history’s best scientists, began his career investigating new kinds of steel in the 1820s. He had limited success.

Other delays occurred. There were unfiled patents in the 1870s on weather-resistant metals. Then efforts stalled. Two decades later, there was a renewed interest to create stainless steel, but it took a wrong turn. A famous scientist, Sir Robert Hadley, erroneously concluded in the 1890s that chromium lessened steel’s ability to fight corrosion. His unfortunate claim curtailed future work, until Harry Brearley serendipitously uncovered that chromium makes steel “rustless” and commercialized it as cutlery, which was announced in The New York Times in 1915. All these steps together made Saarinen’s Gateway Arch possible.

The stainless steel in the Gateway Arch is the same in a household fork. Metal plates (as thick as four nickels) are held together with miles of welds making the arch’s exterior nearly 900 tons. (For comparison, the Chrysler Building has a 27-ton stainless exterior.) The arch is perched on the edge of the Mississippi where an early trading outpost stood, which was frequented by pioneers, fur traders, and explorers before heading westward. In the 1930s, city leaders wanted to transform this decaying site with a monument to honor those who “won” the west, the Louisiana Purchase, and Thomas Jefferson.

Saarinen’s application in 1947, one of 172 entries including one from his famous architect father, captured what these leaders had envisaged—a message to the future, with modern materials, and a wink to the past, with a simple geometric form. Construction did not begin until 1962. Sadly, Saarinen died of a brain tumor in 1961 and never got to see his structure.

Today, the arch stands strong, although it contends with dirt and chemical pollution from industrial emissions from the arch’s early years. These practices are no longer permissible with the establishment of the Clean Air Act in the 1960s. The survival of the arch is not only a testament to stainless steel but to progressive legislation.  The Gateway Arch continually serves as a material, design, and cultural zeitgeist—relevant to the present, but also connecting us to the past as it propels us upward and forward.

Our expanding waistlines result from the  competition between our modern diet and our ancestral genes.  The book Newton’s Football (Random House) spells in out:

Cheap and easy access to calories is a very recent development in the human condition. The hunting and gathering that early man did was a boom-or-bust business. One day there’d be a feast in the form of ripe fruits and vegetables or a freshly killed ox. And there were, of course, no Ziploc bags or Sub-Zero refrigerators in which to store the leftovers.

When the harvest was over and the hunters hit a dry spell, it was famine time. Attempts to store food were generally unsuccessful, and even when it did work, it still required an early human to defend the food against those who’d steal it, human or otherwise.

Storing excess calories as fat was an elegant solution to these problems.

“Fat is the best defense against a rainy day, and throughout human history there were lots of rainy days,” explains David Katz, founding director of the Yale Prevention Research Center.

Additionally, there is a new ingredient in our diet that our ancestors rarely enjoyed, and that is processed sugar.  Sugar is surprisingly prevalent in our modern diets and is found in bread and crackers and salad dressing and tomato sauce. And, that’s more calories to burn.

Sugar in moderation is a good thing and serves as a fuel for our bodies, but if we don’t use sugar, it gets stored. “It’s subject to the laws of thermodynamics,” says Katz. “If you don’t burn it, the body will store it as an excess of calories.”

As one can see, fat was a Stone Age solution for a rainy day when there wasn’t any food. Unfortunately, in our modern day, that rainy day never comes.

So, blame those extra pounds on your ancestors.